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Modified Chain Displacement Function 
for Gaussian Networks 

A. H. CROSSLAND 

Dunlop Research Centre 
Sheridan Park Research Community 
Mississauga, Ontario L5K 128, Canada 

A B S T R A C T  

The probability that a polymeric chain reaches from one 
crosslink junction to a second is given by the probability that 
the chain's end-to-end vector is equal in magnitude and direc- 
tion to the junction-to-junction vector. In calculating this 
probability, conventional Gaussian theories assume independent 
probabilities in the three coordinate directions. This assump- 
tion of independent probabilities means that the conventional 
Gaussian chain displacement function cannot refer  to a specified 
direction as is required. In this paper, the directional prob- 
ability is re-introduced into the Gaussian chain displacement 
function which leads to a novel strain-energy function. This 
strain-energy function is shown to be in quantitative agreement 
with reversible deformation data in extension and in pure shear. 
No additional parameters a r e  introduced into the new function 
which allows the independent determination of both the crosslink 
density and the "front factor" (the ratio of the mean-square 
end-to-end distances of f ree  and crosslinked chains). 
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I N T R O D U C T I O N  

C ROSSLAND 

The Gaussian, o r  statistical, theory of rubber elasticity has been 
derived in a number of ways by a number of authors, and these deri- 
vations a re  discussed in standard texts.[ 1-31. For constant volume 
deformations, these theories predict the same form for the strain- 
energy function for an elastomeric network. 

W = G(Xx2 + A  + X - 3) 
Y Z  

where W is the strain-energy, Xi  is the strain ratio in the i-th direc- 
tion and G is a constant, o r  modulus. The differences among the 
various derivation of Eq. (1) ar ise  from the different techniques of 
generating network averages which lead to different interpretations 
of the parameter G. This a rea  is still one of considerable contro- 
versy and no attempt will be made to resolve i t  here. 

For reversible, uniaxial deformation, Eq. (1) predicts, 

when f is the engineering s t ress  o r  s t ress  per unit of unstrained 
cross  section and X is the strain ratio in the direction of stress.  
Experiments have shown, however, that in simple tension, G is not 
independent of strain, Its value initially decreases with increasing 
elongation until at high strains its value increases rapidly. The 
rapid increase in G at  high strains is usually attributed to finite 
extensibility. The decrease in G at low to moderate extensions has 
not found such a ready interpretation. Mark [ 41, in h is  review, con- 
cludes that this phenomenon is still not understood and i ts  elucidation 
remains a s  one of the major problems in rubber-like elasticity. 
More recently, Crossland and van der Hoff [ 51 concluded that the 
decrease in G in extension is an inherent property of the chain dis- 
placement function, and, special topological o r  structural effects 
need not be introduced to account for this decrease. This conclusion 
was supported by the success of a strain-energy function based on a 
non-Gaussian displacement function in describing a wide variety of 
reversible deformations. Unfortunately, the complexity of the non- 
Gaussian displacement function required that the simplified three- 
chain network approach [ 61 be used. 

Two major points can be taken from the above discussion. First, 
non-Gaussian chain displacement functions can be successful in rep- 
resenting experimental data. Secondly, the network calculations of 
the conventional, statistical theories affect only the interpretation of 
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MODIFIED CHAIN DISPLACEMENT FUNCTION 107 1 

the modulus G and do not introduce strain-dependent terms. Together, 
these observations suggest that the failure of the statistical theories 
to agree with observation probably lies a t  the level of the chain dis- 
placement function. It is the purpose of this letter to critically re-  
examine the Gaussian chain displacement function and propose an 
amended form. 

T H E O R Y  

Consider a crosslinked network of Y chains. Although the cross-  
link junctions may fluctuate about their average positions, the dis- 
tribution of the junction-to-junction vectors, r., will remain unchanged 
by these fluctuations. Hence, the vulcanization process predeter- 
mines the initial distribution of the r.. It is assumed that the cross- 
link juctions a r e  distributed randomly throughout space which means 
that there is an equal probability of finding a particular r .  oriented 
in any direction and that the initial junction-to-junction distances, r., 
are distributed in a Gaussian manner about some average value, 7. ’ 
i. e., 

“I 

“I 

“J 

I’ 

where 

p.‘ = 3/2r 
J j 

(4) 

The problem now is to calculate the probability that a network 
chain stretches from one specified junction to a second specified 
junction. If the origin of a coordinate system is placed at one junc- 
tion, then, according to Flory [ 31, the problem becomes that of 
determining the probability that the chain‘s end-to-end vector reaches 
from the origin to the second specified junction. The second junction 
is represented mathematically by a small volume element, 6V = dxdydz. 
This probability can also be described as the probability that the net- 
work chain end-to-end vector : coincides with the junction-to-junction 
vector or  P(E = r.). In generating this probability, it is generally 
assumed that the probabilities in the three coordinate directions, 
P(x), P(y), and P(z), a r e  independent of one another, and the required 
probability may be found by taking the product of the separate 
Gaussian probabilities. The resulting expression depends only on 
the magnitude of and not on i ts  direction. While the assumption 
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1072 CROSSLAND 

of independent probabilities i s  undoubtably valid for free chains, it 
cannot be correct for network chains which required not only that 
r = r. but also that both vectors have the same orientation. In fact, 
taking the product of the separate probabilities simply gives the 
probability that z has length r., i. e., 

I 

J 

P(r  = r.) = P(x)*P(y).P(z) 
I 

= p f 9 i ~ - ~ ' ~ e x p  I - P ~ ~ . ~ )  
f l  (5) 

where 

Pf2 = 3/2 Ff2 (6) 

a n d r f 2  is the mean squared end-to-end distance of the set  of free 
chains. 

Since the required probability, P(z = r .) is the probability of the  
-1 

equality of two vectors, it must be given by the product of two prob- 
abilities, the probability that L has the same direction a s  r. and the 

probability that r = r 
a s  r.  i s  given by the probability that the axis of the vector 
through the small element of area 6A as opposed to some other 
location on the spherical surface of radius, r 
The area element 6A represents the cross-sectional area of the 
second specified crosslink junction. Since all orientations of; a r e  
equally probable, this probability P( 6A) is simply the area 6A 
divided by the area of the surface. 

Y 
The probability that r has the same direction 

j '  
passes 

"3 

a s  is shown in Fig. 1. 
j' 

P(6A) = 6 A / 4 n r  (7) j 

Since the probability that r = r. has already been described in Eq. (5), 
then the chain displacement function i s  given by: 

J 

P(L = r.) = P(6A) - P(r = r .)  (8) 

(9) 

7 I 

= ( b A p f 3 / 4 ~ ~ ' ~  r.') exp i - P  'r.' I 
I f l  

If the network i s  now so deformed that r. assumes some new value, 
Y then: 
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MODIFIED CHAIN DISPLACEMENT FUNCTION 1073 

I 

FIG. 1. Vectors r. and oriented in the direction of the a r e a  
elements, 6 A. -1 

Since the value of 6A does not change with strain, the entropy change 
for the chain ASc caused by this deformation is given by: 

AS = k In {P(L = L ~ ) / P ( K  = -fj) 1 
C 

= k In {r.‘rk-’ exp [-Pf2(rk’ - rj’)]) 
I 

= -k t ln(rkz/r .’)  + 8,’ ( rkZ - r.‘ ) } (11) 
I I 

If the usual assumption of affine deformation is made and since no 
preferential orientation of the r .  exists, then [ 1, 21 

“I 
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r = (1/3) (AX2 + h ‘ + X z 2  ) r ja  
k Y 

and 

ASc = -k {ln[ (1/3)(hx2 + h ’ + h ’ )]+  (1/3)PfZ(hXZ 
Y Z  

+ h  ’ + A  ’ - 3) r.’ } 
Y Z  1 

(13) 

It should be noted that ASc depends only on the length of r. and not on 
i ts  direction. Hence, in order to determine the change in entropy for 
the whole network (AS,), ASc should be summed over the distribution 
of chain lengths, given by Eq. (3). 

I 

03 

AS = J’ ASc ( ~ v P . ~ T ~ - ” ’  r 2 e x p { - p . 2 r . a  })dr. (14) N o  I j 1 1  J 

The integrals involved in evaluating Eq. (14) are of the form: 

gx2 exp 

j m x 4  exp 

where x is the variable of integration and a is constant. 
Integrating and substituting in Eqs. (4) and (6) yields, 

+ 2 In [ (1/3) (Axz + h + h 1 1 )  (17) 
Y Z  

which in turn leads to the strain-energy function: 

W = - T  ASN 

= z  (h ’ + A  ’ + A  ’ -3)+Z21n(1/3) (hx2  + A  + h  ’) (18) 
‘ 1 x  y z Y Z  

where 
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MODIFIED CHAIN DISPLACEMENT FUNCTION 

2 = f VRTF.~/;;~’ 
1 J 

E2 = vRT 

3/2 El = Ff‘h.“ J 

In uniaxial deformation along the x-axis, let A = Ax, then 

1075 

and Eq. (18) becomes: 

The engineering s t ress  is given by 

f = dW/d A 

= 2 E l  (A - A - 2 )  + 2 E2 (A  - A - 2 ) / ( A Z  + 2 A - 7  

= 2 (A - A -  ” ) [ x 1  + E 2 / ( A 2  + 2x- 73 (23) 

Equation (23) predicts that a plot of G, as defined by Eq. (2) against 
(A + 2A-’)-’, should produce a straight line with slope Z2  and zero 
intercept Zl. 

strain axis, let  A = Ax; then 
In a pure shear deformation, where x is the largest  principal 

A = A  - ‘  
Y X  

h = 1  
Z 

and Eq. (18) becomes 

and the engineering s t ress  along the largest  principal strain axis 
becomes 
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1076 CROSSLAND 

f = dW/dh 

= 2 E l  (h  - Y3) + [ 2 E2(h - A-3) / (X2  + h-' + l)] 

= 2 ( X  - x-")[ E l  + Z2(X2 + l ) - l ]  

Equation (26)~predi:ts that in pure shear a plot of $f/(X - A - 3 )  as a 
function of (A + A -  
Z2  and zero intercept Z1. It should be noted that both the Gaussian 
and the two-constant Mooney-Rivlin function [ 11 predict that 
$f/(X - X3) i s  independent of A. 

+ 1)-' should produce a straight line with slope 

DISCUSSION 

Since the above theory has a Gaussian basis, it can only be expected 
to apply to networks with long, highly flexible chains. The polybuta- 
diene extension data of van der Hoff and Buckler [ 71 do not exhibit 
finite extensibility effects until quite high elongations and, since 
polybutadiene is highly flexible, these data should provide a good 
first test of the theory. When these data are plotted in the manner 
suggested by Eq. (23), as is shown in Fig. 2, reasonably straight lines 
result up to extensions of about X = 3.5, or  ( A 2  + 2 X - ' ) - '  = 0.078, 
when slight negative deviations from theory s tar t  to appear. This 
would seem to be the limit for the applicability of the Gaussian 
approximation in this case. The positive deviations which appear 
at even higher extensions are attributed to finite extensibility. 

u and r ' h  
values a re  reported in Table 1. The values of v so found, a r e  com- 
pared with values estimated from the quantity of crosslinking agent 
added [ 71 and from the zero intercept (2C1) on a Mooney-Rivlin 
plot [ 71. Neither set  of estimates from stress-strain analysis agree 
with the chemical estimates. But, agreement is not expected because 
of the high efficiencies attributed to free radical cure systems at  
low concentrations. The estimates calculated from the present 
theory do, however, reflect better the trend in the initial moduli o r  
stiffnesses of the vulcanizates. 

A comparison of the chain displacement function for the network 
chain, P(: = r .)  given by Eq. (9), with the equivalent expression 
generally assumed for a free chain, denoted here by P(r = r .)  and 

The molecular interpretations of Z 1  and E2 allow the quantities 
to be calculated from the s t r e sds t r a in  data, and these 

f j  
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MODIFIED CHAIN DISPLACEMENT FUNCTION 1077 

4.c 

f 

2 ( x - x ?  

3.0 

k9 
c m 2  
- 

2 .o 

I .o 
1 I I I I I 

(2 + 2 1-1) - 1  

FIG. 2. Reversible, polybutadiene extension data of van der Hoff 
and Buckler [ 71, plotted according to Eq. (23)  with fitted theoretical 
lines. 

given by Eq. (5), shows that P(E = r .)  decreases more rapidly with r .  
-3 3 

than does P(r = rj). This means that the introduction of a crosslink 
onto the end of a f ree  chain will cause the end-to-end distance of the 
chain to retract. Thus, it  is predicted that for normal vulcanization 
processes, which take place in finite time intervals, the mean squared 
junction- to- junc tion distance, r ', will  be l e s s  than the mean squared 

end-to-end distance of the equivalent set  of free chains, Tf2. This 
prediction is supported by the values of the ratio, Tf2fi.', listed in 
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f 

2.2 
Ja 

2 .o 

I .8 
k9 

crn2 
- 

I .6 

1 R i v l i n  a n d  Saunders 

0 . 

I I 1 I I I I 

0 0.05 0.10 0.15 0.20 0.25 0.30 

FIG. 3. Reversible, pure shear data of Rivlin and Saunders [ 81 
and Treloar [ 91 for sulfur-cured natural rubber vulcanizates plotted 
according to Eq. (26) and fitted with theoretical lines. 

Table 1. In a hypothetical, instantaneous vulcanization-process, there 
would be no time for crosslink junction retraction and rf2 would equal 
r .  

with increasing crosslink density, 
a s  reported i n  Table 1 is to be expected for two reasons. First, at  
higher concentrations of crosslinking reagents, the cure proceeds 
faster allowing less  time for crosslink retraction. Secondly, at high 
crosslink densities, a substantial number of crosslinks a r e  formed 
after the "gel point" has been reached. After the "gel point", the 
retraction of new crosslinks beczomes restricted by the integrity of 
the network and the ratio F f z f i  
values. 

Another test of the theory is presented in Fig. 3, where two sets  

- 2  

j The decrease in the ratio Tf2fi 
j 

should tend towards fractional 
j 
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1080 CROSSLAND 

TABLE 2. Summary of Parameters Obtained from Curve-Fitting 
Natural Rubber Pure Shear Data (Fig. 3) 

u (mole/ - 
Data source E l  (kg/cm2) Z2  (kg/cm2) l i ter)  r f2h. '  

I 
Rivlin and 1.71 1.85 0.073 0.54 
Saunders [ 83 

Treloar [ 91 1.46 1.57 0.062 0.54 

of reversible pure shear data for sulfur-cured natural rubber a r e  
plotted according to the manner suggested by Eq. (26). These data 
agree well with the fitted theoretical lines up to the point when finite 
extensibility effects are evident. The parameters obtained from the 
curve-fitting procedure a r e  listed in Table 2. Again the estimates of 
u a r e  proportional'to the initial moduli. Unfortunately, for these 
data, there a re  no independent estimates of the crosslink density. 
The fractional values of T f 2 h . '  found by this analysis must reflect 
the high initial molecular weight of natural rubber. A high initial 
molecular weight would result in a "gel point" very early in the 
vulcanization process and the large proportion of crosslinks added 
subsequently would drive the values r f2h. '  below unity to the 

fractional values found here. The value or T f 2 h  for Treloar's 

data should be larger than for the other set of data. The identity 
between the values obtained from the curve fitting is attributed to 
the fact that the data come from different sources and a re  not part 
of a continuous ser ies  of vulcanizates prepared under similar 
conditions. 

In conclusion, the conventional Gaussian chain displacement 
function i s  criticized because it fails to account for the probability 
that the chain end-to-end vector lies in the direction of the junction- 
to-junction vector. Incorporation of this probability into the chain 
displacement function leads to a new Gaussian strain-energy function 
which quantitatively describes reversible deformation data in two 
modes for two different elastomers. The new strain energy function 
does not contain any parameters which were not inherent in the 
original-function. But, it does permit the calculation of the front 
factor, rf' /F. ', independently from the calculation of the crosslink 

density. 
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